Turbomolecular Pump Station (TMPS) Standardization **C**onsiderations for Turbomolecular Pump Station Requirements # Dan Weiss Brookhaven National Laboratory #### TMPS Standardization Considerations - Applications & Scope - Performance & Operating Requirements - Operating Environments - » Rad Hard TMP and Electrical Components - High & Low Level Control System Interface - » Proposed Schematic - Issues # **Application & Scope** #### LINAC - »Roughing - »Insulating Vacuum, Permanent #### Ring - **»**Roughing - »Ion Pump Protection, Permanent (13) - »Pumping at Beam Dump Windows (3) - »Supplemental Ion Pump Protection, Temporary (2) - »Quantity of 18 #### **Performance & Operating Requirements** - Performance - »Pumping Speed - <200 Liters/sec Covers all Ring applications</p> - »Design Base Pressure - <1x10⁻⁸ Torr Covers all Ring applications - Operating Modes - »Portable - »Roughing, Pumping - »Local, Remote - »Interlocks - Pump station protection - Accelerator Protection #### **Operating Environments** - Ring - » Residual Activation - ALARA: Impact to Personnel Activities - Entire Station is permanent - Turbopump is permanent - » High Radiation During Operation - Impact on Component Designs - Possible Impact on Remote Operation Design - Possible Impact on Installation Design - LINAC - » Low Radiation - Less Restrictive #### **Example of a Rad Hard TMPS electrical component** - radiation exposure to 10⁸ rad = 10⁶ J / kg - The mechanical Frequency Converter TCP 010 drives the PFEIFFER TMH/U 260 with three-pase current. It generates the drive frequency for the rotation speed of the pump and is suitable for the operation of systems where there is a high incidence of radiation and interference voltage peaks. - Uses an electro-motoric drive without semiconductors. - Turbopump is monitored and interlocked with the TCP 010 and TCA 010. - The integrated thermo switch operates in conjunction with the TCA 010 to switch off the frequency converter when the permissible temperature is exceeded #### **Example of a Rad Hard Turbopump** - radiation exposure to 10⁸ rad = 10⁶ J / kg - Includes metal seals in body and hall probes for speed measurement - Compound pump, suitable for UHV vacuum with dry backing pump (i.e., high compression ratio). #### 8. Technical Data | Feature | Unit | TMH 260
TMH 260 P | TMU 260
TMU 260 P | |--|-----------------------|---|----------------------| | Connection nominal diameter
Inlet
Outlet
Venting connection | | DN 100 ISO-K
DN 25 ISO-KF
G 1/8" | | | Frequency Converter
Nominal rotation speed
Run-up time (up to 90% of the | 1/min | TCP 010
45 000 |) | | rated rotation speed)
Noise level
Final pressure, backing pump | min
dB (A)
mbar | 3
< 50
< 5 | | | Max. permissible rotor
temperature
Permissible heat radiation power | °C
W | 90
6 | | | Volume flow rate for:
Nitrogen N ₂
Helium He
Hydrogen H ₂ | Vs
Vs
Vs | 160
165
100 | | | Max. gas throughput ¹⁾
N ₂
He | mbar I/s
mbar I/s | 3.5
4.0 | | | Final pressure ²⁾ with rotary vane vacuum pump with diaphragm vacuum pump | mbar
mbar | 5 · 10 ⁻¹⁰
1 · 10 ⁻⁸ | | # **G-2 Turbo station** - 100% vendor items #### **High & Low Level Control System Interface** - Electromechanical based local interface⁽¹⁾ - I/O based remote interface⁽¹⁾ - » PLC Architecture supports approach - Quantity I/O - independent PID loops - Interlocks (Low and/or High Level Control) (1,2) - » Pump station protection - » Accelerator Protection - (1) Unless shielding of electronics is implemented, or rad hard components are identified. - (2) Some interlocking features may be incorporated at the local (low) level depending on vendor products. #### **Electromechanical Based System Schematic** #### TMPS Standardization Issues - Applications and Scope - » Applications are similar - » Non-standard features (if needed) should be cost effective for required quantities - Performance & Operating Requirements - » All requirements point to a common pumping system - » Identify portability (or other logistical) requirements combined with need for remote control - Operating Environments - » Radiation environment in ring (ALARA) is most restrictive TMPS consideration - » Commercially available rad hard electronics? - eliminates any need for custom boxes - degree may dictate component placement and shielding - High & Low Level Control System Interface - » I/O (& analog) baseline - » Back-up is RS-485 network if rad hard components are identified - » Establish interlock and I/O requirements for each application - Need to identify other vendors and products suitable for radiation environment - ~\$15k per station